9 research outputs found

    Complexity of the List Homomorphism Problem in Hereditary Graph Classes

    Get PDF
    A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). For a fixed graph H, in the list homomorphism problem, denoted by LHom(H), we are given a graph G, whose every vertex v is equipped with a list L(v) ? V(H). We ask if there exists a homomorphism f from G to H, in which f(v) ? L(v) for every v ? V(G). Feder, Hell, and Huang [JGT 2003] proved that LHom(H) is polynomial time-solvable if H is a so-called bi-arc-graph, and NP-complete otherwise. We are interested in the complexity of the LHom(H) problem in F-free graphs, i.e., graphs excluding a copy of some fixed graph F as an induced subgraph. It is known that if F is connected and is not a path nor a subdivided claw, then for every non-bi-arc graph the LHom(H) problem is NP-complete and cannot be solved in subexponential time, unless the ETH fails. We consider the remaining cases for connected graphs F. If F is a path, we exhibit a full dichotomy. We define a class called predacious graphs and show that if H is not predacious, then for every fixed t the LHom(H) problem can be solved in quasi-polynomial time in P_t-free graphs. On the other hand, if H is predacious, then there exists t, such that the existence of a subexponential-time algorithm for LHom(H) in P_t-free graphs would violate the ETH. If F is a subdivided claw, we show a full dichotomy in two important cases: for H being irreflexive (i.e., with no loops), and for H being reflexive (i.e., where every vertex has a loop). Unless the ETH fails, for irreflexive H the LHom(H) problem can be solved in subexponential time in graphs excluding a fixed subdivided claw if and only if H is non-predacious and triangle-free. On the other hand, if H is reflexive, then LHom(H) cannot be solved in subexponential time whenever H is not a bi-arc graph

    Fine-Grained Complexity of the List Homomorphism Problem: Feedback Vertex Set and Cutwidth

    Get PDF
    For graphs G,H, a homomorphism from G to H is an edge-preserving mapping from V(G) to V(H). In the list homomorphism problem, denoted by LHom(H), we are given a graph G, whose every vertex v is equipped with a list L(v) ? V(H), and we need to determine whether there exists a homomorphism from G to H which additionally respects the lists L. List homomorphisms are a natural generalization of (list) colorings. Very recently Okrasa, Piecyk, and Rz??ewski [ESA 2020] studied the fine-grained complexity of the problem, parameterized by the treewidth of the instance graph G. They defined a new invariant i^*(H), and proved that for every relevant graph H, i.e., such that LHom(H) is NP-hard, this invariant is the correct base of the exponent in the running time of any algorithm solving the LHom(H) problem. In this paper we continue this direction and study the complexity of the problem under different parameterizations. As the first result, we show that i^*(H) is also the right complexity base if the parameter is the size of a minimum feedback vertex set of G, denoted by fvs(G). In particular, for every relevant graph H, the LHom(H) problem - can be solved in time i^*(H)^fvs(G) ? |V(G)|^?(1), if a minimum feedback vertex set of G is given, - cannot be solved in time (i^*(H) - ?)^fvs(G) ? |V(G)|^?(1), for any ? > 0, unless the SETH fails. Then we turn our attention to a parameterization by the cutwidth ctw(G) of G. Jansen and Nederlof [TCS 2019] showed that List k-Coloring (i.e., LHom(K_k)) can be solved in time c^ctw(G) ? |V(G)|^?(1) for an absolute constant c, i.e., the base of the exponential function does not depend on the number of colors. Jansen asked whether this behavior extends to graph homomorphisms. As the main result of the paper, we answer the question in the negative. We define a new graph invariant mim^*(H), closely related to the size of a maximum induced matching in H, and prove that for all relevant graphs H, the LHom(H) problem cannot be solved in time (mim^*(H)-?)^{ctw(G)}? |V(G)|^?(1) for any ? > 0, unless the SETH fails. In particular, this implies that, assuming the SETH, there is no constant c, such that for every odd cycle the non-list version of the problem can be solved in time c^ctw(G) ? |V(G)|^?(1)

    Faster 3-Coloring of Small-Diameter Graphs

    Get PDF

    List Locally Surjective Homomorphisms in Hereditary Graph Classes

    Get PDF
    A locally surjective homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H) that is surjective in the neighborhood of each vertex in G. In the list locally surjective homomorphism problem, denoted by LLSHom(H), the graph H is fixed and the instance consists of a graph G whose every vertex is equipped with a subset of V(H), called list. We ask for the existence of a locally surjective homomorphism from G to H, where every vertex of G is mapped to a vertex from its list. In this paper, we study the complexity of the LLSHom(H) problem in F-free graphs, i.e., graphs that exclude a fixed graph F as an induced subgraph. We aim to understand for which pairs (H,F) the problem can be solved in subexponential time. We show that for all graphs H, for which the problem is NP-hard in general graphs, it cannot be solved in subexponential time in F-free graphs for F being a bounded-degree forest, unless the ETH fails. The initial study reveals that a natural subfamily of bounded-degree forests F, that might lead to some tractability results, is the family ? consisting of forests whose every component has at most three leaves. In this case, we exhibit the following dichotomy theorem: besides the cases that are polynomial-time solvable in general graphs, the graphs H ? {P?,C?} are the only connected ones that allow for a subexponential-time algorithm in F-free graphs for every F ? ? (unless the ETH fails)

    Full Complexity Classification of the List Homomorphism Problem for Bounded-Treewidth Graphs

    Get PDF
    A homomorphism from a graph G to a graph H is an edge-preserving mapping from V(G) to V(H). Let H be a fixed graph with possible loops. In the list homomorphism problem, denoted by LHom(H), we are given a graph G, whose every vertex v is assigned with a list L(v) of vertices of H. We ask whether there exists a homomorphism h from G to H, which respects lists L, i.e., for every v ? V(G) it holds that h(v) ? L(v). The complexity dichotomy for LHom(H) was proven by Feder, Hell, and Huang [JGT 2003]. The authors showed that the problem is polynomial-time solvable if H belongs to the class called bi-arc graphs, and for all other graphs H it is NP-complete. We are interested in the complexity of the LHom(H) problem, parameterized by the treewidth of the input graph. This problem was investigated by Egri, Marx, and Rz??ewski [STACS 2018], who obtained tight complexity bounds for the special case of reflexive graphs H, i.e., if every vertex has a loop. In this paper we extend and generalize their results for all relevant graphs H, i.e., those, for which the LHom(H) problem is NP-hard. For every such H we find a constant k = k(H), such that the LHom(H) problem on instances G with n vertices and treewidth t - can be solved in time k^t ? n^?(1), provided that G is given along with a tree decomposition of width t, - cannot be solved in time (k-?)^t ? n^?(1), for any ? > 0, unless the SETH fails. For some graphs H the value of k(H) is much smaller than the trivial upper bound, i.e., |V(H)|. Obtaining matching upper and lower bounds shows that the set of algorithmic tools that we have discovered cannot be extended in order to obtain faster algorithms for LHom(H) in bounded-treewidth graphs. Furthermore, neither the algorithm, nor the proof of the lower bound, is very specific to treewidth. We believe that they can be used for other variants of the LHom(H) problem, e.g. with different parameterizations

    Taming Graphs with No Large Creatures and Skinny Ladders

    Get PDF
    We confirm a conjecture of Gartland and Lokshtanov [arXiv:2007.08761]: if for a hereditary graph class ? there exists a constant k such that no member of ? contains a k-creature as an induced subgraph or a k-skinny-ladder as an induced minor, then there exists a polynomial p such that every G ? ? contains at most p(|V(G)|) minimal separators. By a result of Fomin, Todinca, and Villanger [SIAM J. Comput. 2015] the latter entails the existence of polynomial-time algorithms for Maximum Weight Independent Set, Feedback Vertex Set and many other problems, when restricted to an input graph from ?. Furthermore, as shown by Gartland and Lokshtanov, our result implies a full dichotomy of hereditary graph classes defined by a finite set of forbidden induced subgraphs into tame (admitting a polynomial bound of the number of minimal separators) and feral (containing infinitely many graphs with exponential number of minimal separators)

    Finding Large H-Colorable Subgraphs in Hereditary Graph Classes

    Get PDF
    We study the \textsc{Max Partial HH-Coloring} problem: given a graph GG, find the largest induced subgraph of GG that admits a homomorphism into HH, where HH is a fixed pattern graph without loops. Note that when HH is a complete graph on kk vertices, the problem reduces to finding the largest induced kk-colorable subgraph, which for k=2k=2 is equivalent (by complementation) to \textsc{Odd Cycle Transversal}. We prove that for every fixed pattern graph HH without loops, \textsc{Max Partial HH-Coloring} can be solved: ∙\bullet in {P5,F}\{P_5,F\}-free graphs in polynomial time, whenever FF is a threshold graph; ∙\bullet in {P5,bull}\{P_5,\textrm{bull}\}-free graphs in polynomial time; ∙\bullet in P5P_5-free graphs in time nO(ω(G))n^{\mathcal{O}(\omega(G))}; ∙\bullet in {P6,1-subdivided claw}\{P_6,\textrm{1-subdivided claw}\}-free graphs in time nO(ω(G)3)n^{\mathcal{O}(\omega(G)^3)}. Here, nn is the number of vertices of the input graph GG and ω(G)\omega(G) is the maximum size of a clique in~GG. Furthermore, combining the mentioned algorithms for P5P_5-free and for {P6,1-subdivided claw}\{P_6,\textrm{1-subdivided claw}\}-free graphs with a simple branching procedure, we obtain subexponential-time algorithms for \textsc{Max Partial HH-Coloring} in these classes of graphs. Finally, we show that even a restricted variant of \textsc{Max Partial HH-Coloring} is NP\mathsf{NP}-hard in the considered subclasses of P5P_5-free graphs, if we allow loops on HH

    Computing Homomorphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and Graphs with No Long Claws

    Get PDF
    For graphs G and H, an H-coloring of G is an edge-preserving mapping from V(G) to V(H). In the H-Coloring problem the graph H is fixed and we ask whether an instance graph G admits an H-coloring. A generalization of this problem is H-ColoringExt, where some vertices of G are already mapped to vertices of H and we ask if this partial mapping can be extended to an H-coloring. We study the complexity of variants of H-Coloring in F-free graphs, i.e., graphs excluding a fixed graph F as an induced subgraph. For integers a,b,c ? 1, by S_{a,b,c} we denote the graph obtained by identifying one endvertex of three paths on a+1, b+1, and c+1 vertices, respectively. For odd k ? 5, by W_k we denote the graph obtained from the k-cycle by adding a universal vertex. As our main algorithmic result we show that W_5-ColoringExt is polynomial-time solvable in S_{2,1,1}-free graphs. This result exhibits an interesting non-monotonicity of H-ColoringExt with respect to taking induced subgraphs of H. Indeed, W_5 contains a triangle, and K_3-Coloring, i.e., classical 3-coloring, is NP-hard already in claw-free (i.e., S_{1,1,1}-free) graphs. Our algorithm is based on two main observations: 1) W_5-ColoringExt in S_{2,1,1}-free graphs can be in polynomial time reduced to a variant of the problem of finding an independent set intersecting all triangles, and 2) the latter problem can be solved in polynomial time in S_{2,1,1}-free graphs. We complement this algorithmic result with several negative ones. In particular, we show that W_5-Coloring is NP-hard in P_t-free graphs for some constant t and W_5-ColoringExt is NP-hard in S_{3,3,3}-free graphs of bounded degree. This is again uncommon, as usually problems that are NP-hard in S_{a,b,c}-free graphs for some constant a,b,c are already hard in claw-free graph

    Sparsification Lower Bounds for List H-Coloring

    Get PDF
    We investigate the List H-Coloring problem, the generalization of graph coloring that asks whether an input graph G admits a homomorphism to the undirected graph H (possibly with loops), such that each vertex v ? V(G) is mapped to a vertex on its list L(v) ? V(H). An important result by Feder, Hell, and Huang [JGT 2003] states that List H-Coloring is polynomial-time solvable if H is a so-called bi-arc graph, and NP-complete otherwise. We investigate the NP-complete cases of the problem from the perspective of polynomial-time sparsification: can an n-vertex instance be efficiently reduced to an equivalent instance of bitsize ?(n^(2-?)) for some ? > 0? We prove that if H is not a bi-arc graph, then List H-Coloring does not admit such a sparsification algorithm unless NP ? coNP/poly. Our proofs combine techniques from kernelization lower bounds with a study of the structure of graphs H which are not bi-arc graphs
    corecore